REMOVAL OF METHYLENE BLUE USING SPENT BLEACHING EARTH
DOPED WITH ZINC OXIDE UNDER VISIBLE LIGHT

JESSICA WONG HUI ING

A proposal submitted in the fulfilment
of the requirement for the award of degree of
Bachelor of Engineering (Chemical)

Faculty of Chemical Engineering
Universiti Teknologi Malaysia

9th JANUARY 2013
Batch experiments are carried out to remove cationic dye, methylene blue (MB), using spent bleaching earth (SBE) as an adsorbent and zinc oxide as the photocatalyst. Spent bleaching earth is a waste that inevitably generated from edible oil processing. Meanwhile, zinc oxide is a semiconductor acts as sensitizers for light-induced redox-processes. Operating parameters studied were pH, initial dye concentration, adsorbent dosage, contact time and catalyst loadings. The dye solution is firstly added with SBE and followed by zinc oxide by stirring of solution for 30 min under visible light. Methylene blue concentration was determined using spectrophotometer. The optimum initial dye concentration is at 25mg/L and optimum contact time of 30min. The adsorbed amount of MB dye on spent bleaching earth increased with increasing pH, spent bleaching earth dosage, contact time and catalyst loadings. The removal of the methylene blue increased with increasing in pH which leads to the increasing number of negatively charged sites that are available. The availability of adequate surface area of adsorbent also affects the percentage removal of MB with time. It was further found that the sorption isotherms follow the Freundlich model with good determination coefficient. From this study, it can be concluded spent bleaching earth and zinc oxide present good removal efficiency of methylene blue. Besides, zinc oxide can enhance the removal of MB.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td></td>
<td>i</td>
</tr>
<tr>
<td>SELF DECLARATIONS</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xv</td>
</tr>
</tbody>
</table>

1 INTRODUCTION | 1 |
1.1 Research Background | 1 |
1.2 Problem Statement | 4 |
1.3 Objectives of Study | 6 |
1.4 Scopes of study | 6 |

2 LITERATURE REVIEW | 7 |
2.1 Introduction | 7 |
2.1.1 Methylene blue | 8 |
2.2 Removal Technology | 9 |
2.2.1 Biological Treatments | 9 |
2.2.2 Physical Methods | 10 |
2.2.3 Chemical Methods | 10 |
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3</td>
<td>Adsorption Based Spent Bleaching Earth</td>
<td>12</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Introduction to Adsorption</td>
<td>12</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Parameters</td>
<td>14</td>
</tr>
<tr>
<td>2.3.2.1</td>
<td>Effect of pH</td>
<td>14</td>
</tr>
<tr>
<td>2.3.2.2</td>
<td>Effect of Contact time</td>
<td>15</td>
</tr>
<tr>
<td>2.3.2.3</td>
<td>Effect of Initial dye concentration</td>
<td>16</td>
</tr>
<tr>
<td>2.3.2.4</td>
<td>Effect of Adsorbent Dosage</td>
<td>17</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Kinetics Studies</td>
<td>18</td>
</tr>
<tr>
<td>2.3.3.1</td>
<td>Pseudo-first-order rate equation</td>
<td>19</td>
</tr>
<tr>
<td>2.3.3.2</td>
<td>Pseudo-second-order rate equation</td>
<td>20</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Adsorption Isotherms</td>
<td>22</td>
</tr>
<tr>
<td>2.3.4.1</td>
<td>Freundlich Isotherm</td>
<td>22</td>
</tr>
<tr>
<td>2.3.4.2</td>
<td>Langmuir Isotherm</td>
<td>24</td>
</tr>
<tr>
<td>2.4</td>
<td>Spent Bleaching Earth Adsorbents</td>
<td>25</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Introduction to Bleaching Earth</td>
<td>25</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Spent Bleaching Earth</td>
<td>27</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Structure of Spent Bleaching Earth</td>
<td>28</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Application of SBE in removal of dye</td>
<td>30</td>
</tr>
<tr>
<td>2.5</td>
<td>Photocatalytic Degradation using Zinc Oxide</td>
<td>31</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Introduction to Photocatalytic degradation</td>
<td>31</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Parameters</td>
<td>33</td>
</tr>
<tr>
<td>2.5.2.1</td>
<td>Effect of pH</td>
<td>33</td>
</tr>
<tr>
<td>2.5.2.2</td>
<td>Effect of initial dye concentration</td>
<td>35</td>
</tr>
<tr>
<td>2.5.2.3</td>
<td>Effect of Catalyst Loading</td>
<td>36</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Zinc Oxide</td>
<td>37</td>
</tr>
<tr>
<td>2.5.4</td>
<td>Application of ZnO in removal of dye</td>
<td>38</td>
</tr>
<tr>
<td>3</td>
<td>METHODOLOGY</td>
<td>40</td>
</tr>
<tr>
<td>3.1</td>
<td>Materials</td>
<td>40</td>
</tr>
<tr>
<td>3.2</td>
<td>Apparatus and Instruments</td>
<td>40</td>
</tr>
</tbody>
</table>
3.3 Experimental Procedure 41
 3.3.1 Preparation of Stock Solution 41
 3.3.2 Removal of MB onto SBE via adsorption 41
 3.3.2.1 Effect of Initial Dye Concentration 42
 3.3.2.2 Effect of Contact time 42
 3.3.2.3 Effect of Adsorbent dosage 42
 3.3.2.4 Effect of pH solution 43
 3.3.3 Removal of Methylene blue onto SBE 43
 Doped with Zinc Oxide under visible light
 3.3.3.1 Effect of Initial Dye concentration 44
 3.3.3.2 Effect of Contact time 45
 3.3.3.3 Effect of Catalyst loading 45
 3.3.3.4 Effect of pH solution 46
 3.4 Adsorption Capacity Calculation 46

4 RESULTS AND DISCUSSIONS 47
 4.1 Introduction 47
 4.2 Removal of methylene blue using spent 47
 bleaching earth under visible light
 4.2.1 Adsorption Isotherms 48
 4.2.2 Effect of Initial Dye concentration 50
 4.2.3 Effect of Contact time 52
 4.2.4 Effect of adsorbent dosage 54
 4.2.5 Effect of solution pH 55
 4.3 Removal of methylene blue using SBE 57
 doped with zinc oxide under visible light
 4.3.1 Effect of initial dye concentration 58
 4.3.2 Effect of contact time 59
 4.3.3 Effect of pH 60
 4.3.4 Effect of catalyst loading 61
 4.4 Comparison study on adsorption and 63
 photodegradation of MB onto SBE and ZnO

5 CONCLUSIONS AND RECOMMENDATION 67
5.1 Conclusions 67
5.2 Recommendations 68

REFERENCES 69

APPENDIX 77
REFERENCES

Banat, I.M., Nigam, P., Sing, D., Marchant, R., (1996). Microbial decolorization of
textile-dye-containing effluents: a review. *Bioresource Technology* 58: 217-227

and activated date pits as potential adsorbents for dye containing waters.
Process Biochemistry 39: 193-20

Banat, F., Al-Asheh, S., Al-Ahmad, R., Bni-Khalid, F. (2007). Bench-scale and
packed bed sorption of methylene blue using treated olive pomace and
charcoal. *Bioresource Technology* 98: 3017–3025

studies for the adsorption of Acid dye onto modified hectorite. *Journal of
Hazardous Materials* 136(3): 989-992

in wastewater using ZnO as semiconductor catalyst. *Journal of Hazardous
Materials* 112(3): 269-278.

Chandra, T.C., Mirna M.M., Sudaryanto, Y., Ismadji, S., (2007). Adsorption of basic
dye onto activated carbon prepared from durian shell: studies of adsorption
equilibrium and kinetics, *Chemical Engineering Journal* 127: 121-129

on Montmorillonite. *Advanced Materials Research* 454: 305-309.

Chiu, W.S., Khiewa, P.S., Clokea, M., Isa, D., Tana, T.K., Radiman, S., Abd-
Photocatalytic study of two-dimensional ZnO nanopellets in the
decomposition of methylene blue. *Chemical Engineering Journal* 158: 345-352

Cooper, P., (1993). Removing colour from dyehouse waste waters: a critical review
of technology available. *Journal Social Dyers Colorists* 109: 97-100

