EXERCISE BIKE ELECTROLYSER AS THE HYDROGEN PRODUCTION SYSTEM

MUHAMAD NASIRUDDIN BIN MOHD SAMSI

A thesis submitted in the fulfilment of the requirement for the award of degree of Bachelor of Engineering (Chemical)

Faculty of Chemical Engineering
Universiti Teknologi Malaysia

JANUARY 2013
In this study, the exercise bike electrolyser as the hydrogen production system is discussed. The objective of this study is to design and construct a model of exercise bike electrolyser and to analyze the efficiency of the exercise bike electrolyser as the hydrogen production system. The bicycle is pedalled for 30 minutes and the voltage and hydrogen gas produce is analyzed. Result shows that maximum voltage produce is 0.87V and average voltage produce is 0.75V. There are no hydrogen produce due to low electric current produce and high overpotential of iron nail electrode. As a conclusion, the system is inefficiently to produce hydrogen.
Dalam kajian ini, basikal senaman elektroliser sebagai sistem pengeluaran hidrogen dibincangkan. Objektif kajian ini ialah untuk merekabentuk dan membina sebuah model basikal senaman elektroliser dan untuk menganalisis kecekapan daripada basikal senaman elektroliser sebagai sistem penghasilan hidrogen. Basikal dikayuh selama 30 minit dan voltan bersama dengan gas hydrogen yang terhasil dianalisis. Keputusan menunjukkan bahawa hasil voltan maksimum adalah 0.87V dan hasil voltan purata adalah 0.75V. Analisa menunjukkan hidrogen tidak dihasilkan kerana penghasilan arus elektrik yang rendah dan lebihan voltan elektrod paku besi yang tinggi. Sebagai kesimpulan, sistem ini tidak cekap untuk menghasilkan hydrogen.
TABLES OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td>i</td>
<td></td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>viii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xi</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xii</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xiv</td>
<td></td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xv</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xvi</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Background of Study 1
1.2 Problem Statement 3
1.3 Objective of Study 3
1.4 Scope of Study 4
2 LITERATURE REVIEW 5
 2.1 Hydrogen 5
 2.1.1 Hydrogen as a Fuel 5
 2.1.2 Hydrogen Used in Fuel Cell 7
 2.2 Water Electrolysis 7
 2.2.1 Electrolyser 9
 2.2.2 Alkaline Electrolyser 11
 2.2.3 Proton Exchange Membrane 12
 2.3 Renewable Energy 13
 2.3.1 Wind Energy 15
 2.3.2 Wind Energy in Malaysia 16
 2.3.3 Limitation of Wind Energy 18
 2.3.4 Solar Energy 19
 2.3.5 Limitation of Solar Energy 20
 2.4 Exercise for a Healthy Lifestyle 21
 2.4.1 Cycling 22
 2.4.2 Pedal-A-Watt 23
 2.5 Alternator 25

3 METHODOLOGY 27
 3.1 Introduction 27
 3.2 Designing the Exercise Bike’s Electrolyser System 27
 3.3 Construct the Exercise Bike 29
 3.4 Fabrication the Alkaline Electrolyser 31
 3.5 Preparation of 30 wt% of Potassium Hydroxide Solution 33
 3.6 Hydrogen Gas Production Analysis 33
 3.7 Data Collection 35
 3.8 Quality Analysis of Hydrogen Gas 36

4 RESULT AND DISCUSSION 37
 4.1 The Qualitative Analysis of Hydrogen Gas 37
 4.2 Analysis of the Current Generation 38
5 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

5.2 Recommendations

REFERENCES

APPENDICES
REFERENCES

Design and realization of a 300 W fuel cell generator on an electric bicycle:

