REMOVAL OF REACTIVE DYE WITH FLAT SHEET SUPPORTED LIQUID MEMBRANE

ANDELINELIM EE SIN

A thesis submitted in fulfillment of the requirements for the award of the degree of Bachelor of Engineering (Chemical)

Faculty of Chemical Engineering
Universiti Teknologi Malaysia

JANUARY 2013
ABSTRACT

The abundant use of reactive dyes in textile industries has risen as an environmental issues as it is highly toxic and chemically hazard. The reactive dye is often used for dyeing of cotton and cellulose fibre due to its color fastness and bright colors. The reactive dyes have high solubility in water which makes it ineffective to treat by conventional wastewater treatment process. In this study, the extraction and removal of Remazol Black B dye are carried out using supported liquid membrane (SLM) in continuous process. The supported liquid membrane is prepared by impregnate the commercial membrane support with kerosene as diluents, and presence of tridodecylamine (TDA) as carrier and salicylic acid (SA) as co extractant. Besides, the NaOH is used as the stripping agent at the acceptor phase. Six parameters have been studied to examine the optimum condition for extraction and stripping process. The parameters includes flow rate of feed phase, pH of the feed phase, concentration of stripping agent, concentration of the feed concentration, concentration of stripping agent, concentration of salt in feed phase, and stability of membranes. The results show the supported liquid membrane having the optimum condition when the flow rate is 150 ml/min, pH 2 at the feed phase, with the 0.2 M of stripping agent, and 70 ppm of feed phase. The addition of salt would affect on the removal efficiency. At optimum condition, the percentage of extraction and recovery was 99%. Meanwhile, the results show that the SLM was stable for 34.5 hours with optimum conditions.
ABSTRAK

Penggunaan pewarna reaktif dalam industri tekstil telah membangkitkan isu alam sekitar disebabkan pewarna reaktif merupakan bahan toksik dan berbahaya. Pewarna reaktif sering digunakan untuk pewarnaan gentian kapas dan selulosa kerana ketahanan luntur dan warnanya bersifat terang. Pewarna reaktif sangat larut dalam air menyebabkan ia tidak sesuai untuk dirawat dengan proses rawatan air sisa lazim. Dalam kajian ini, pengekstrakan dan pelucutan pewarna reaktif telah dijalankan melalui process membran penyokong cecair (SLM) secara berterusan. SLM disediakan dengan penyuburan cecair terdiri daripada pelarut kerosin, tridodecylamine (TDA) sebagai pembawa dan asid salicyclid (SA) sebagai pembantu pembawa. Manakala, natrium hidroksida digunakan sebagai ejen pelucutan di fasa penerima. Enam parameter telah dikaji untuk menentukan keadaan optimum untuk process pengekstrakan dan pelucutan. Parameter dikaji termasuk kadaralir air di fasa suapan, pH pada fasa suapan, kepekatan agen pelucutan, kepekatan pewarna reaktif di fasa suapan, kepekatan garam di fasa suapan, dan kestabilan membran. Keputusan kajian menunjukkan optimum dicapai pada kadaralir 150 ml/min, pH 2 pada fasa suapan, 0.2 M kepekatan agen pelucutan NaOH dan, 70 ppm kepekatan pewarna reaktif di fasa suapan. Kandungan garam di fasa suapan akan mengakibatkan penurunan kecekapan pelucutan. Pada keadaan optimum, peratusan pengekstrakan and penghasilan semula adalah 99%. Manakala, membran penyokong cecair didapati stabil selepas menjalankan process selama 34.5 jam secara berterusan.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td>Title Page</td>
<td>i</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>Declaration</td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>Dedication</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>Acknowledgements</td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>Abstract</td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>Abstract</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENT</td>
<td>Table of Contents</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLE</td>
<td>List of Table</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>List of Figures</td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>List of Appendices</td>
<td>xiii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS AND ABBREVIATION</td>
<td>List of Symbols and Abbreviation</td>
<td>xiv</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Background of Studies | 1 |
1.2 Problem Statement | 2 |
1.3 Research Objective | 3 |
1.4 Research Scope | 3 |
1.5 Significant of Studies | 4 |

2 LITERATURE REVIEW

2.1 Hazardous Waste | 6 |
2.2 Dyes in Textile Industries | 7 |
2.2.1 Reactive Dyes 8
 2.2.1.1 Remazol Black B dye 10
 2.3.1.1 Environmental Effect of Reactive Black B 11
2.3 Treatment For Removal of Reactive Dye 13
 2.3.1 Chemical Treatment 13
 2.3.2 Physical Treatment 15
 2.3.3 Biological Treatment 16
 2.3.4 Liquid-Liquid Extraction 17
 2.3.5 Liquid Membrane Technology 17
2.4 Supported Liquid Membrane Technology 18
 2.4.1 Introduction 18
 2.4.2 Theory of Supported Liquid Membrane 19
 2.4.3 Liquid Membrane Formulation 21
 2.4.3.1 Carrier 21
 2.4.3.2 Diluents 22
 2.4.3.3 Stripping Agent 23
 2.4.4 Mass Transfer Mechanism of Liquid Membrane 23
 2.4.4.1 Simple Permeation 24
 2.4.4.2 Carrier Mediated Transport 25
 2.4.5 Application of Supported Liquid Membrane 28
2.5 Parameters Affecting Supported Liquid Membrane Process 28
 2.5.1 Effect of Flow Velocity of Feed Phase 29
 2.5.2 Effect of pH in Feed Phase 29
 2.5.3 Effect of Stripping Agent Concentration 30
 2.5.4 Effect of Feed Concentration 30
 2.5.5 Effect of Salt Concentration In Feed Phase 31
 2.5.6 Stability of Membrane 31

3 MATERIALS AND METHODS 32
 3.1 Chemical and Apparatus 32
 3.1.1 Apparatus 32
 3.1.2 Membrane Components 32
3.1.3 Remazol Black B Dye 33
3.2 Experimental Procedures 34
 3.2.1 Supported Liquid Membrane Preparation 34
 3.2.2 Removal Studies 35
 3.2.2.1 Effect of Flow Rate of Feed Phase 35
 3.2.2.2 Effect of pH in Feed Phase 35
 3.2.2.3 Effect of Stripping Agent Concentration 36
 3.2.2.4 Effect of Feed Concentration 36
 3.2.2.5 Effect of Salt Concentration in Feed Phase 37
 3.2.2.6 Stability 37
3.3 Analytical Procedures 37
 3.3.1 Reactive Dye Concentration Analysis 37

4 RESULTS AND DISCUSSION
 4.1 Introduction 39
 4.2 Effect of Flow Velocities of Aqueous Solution 39
 4.3 Effect of pH in Feed Phase 42
 4.4 Effect of Stripping Agent Concentration 46
 4.5 Effect of Feed Concentration 49
 4.6 Effect of Salt Concentration In Feed Phase 52
 4.7 Stability of Membrane 54

5 CONCLUSION AND RECOMMENDATION
 5.1 Conclusion 57
 5.2 Recommendation 58

REFERENCES 59

APPENDIX 68
REFERENCES

