SELECTIVE EMULSION LIQUID MEMBRANE EXTRACTION OF PALLADIUM FROM SIMULATED SEMICONDUCTOR WASTE

NURUL ASHIDA BINTI ABDULLAH

A report submitted in partially fulfillment of the requirement for the award of the degree of Bachelor of Engineering (Chemical)

Faculty of Chemical and Natural Resources Engineering
Universiti Teknologi Malaysia

JANUARY 2012
ABSTRACT

Semiconductor waste from electroplating industry becomes a major concern in term of environmental problem and monetary value due to toxicity and novel metal in the wastewater. In electroplating processes, several metals have been used such as silver plating, nickel plating, palladium plating and copper plating. The targeted electroplating metal in this study is palladium. There are several methods have been research to find the suitable method that have high selectivity on extraction of Palladium from simulated wastewater and one of the promising methods is Liquid Membrane technique. Liquid membrane system comprises of three liquid phases; feed phase (wastewater), liquid membrane organic phase and receiving phase. Emulsion liquid membrane is a liquid membrane in which the membrane phase of an emulsion is dispersed into the feed phase to be treated. This method was investigated as an alternative process for treatment and also recovery of Palladium from simulated semiconductor waste. The important parameters governing the extraction of Palladium such as concentration of carrier and stripping agents, types of stripping agents, contact time and treat ratio were investigated. This experiment has been conducted using a mixer-settler in a batch system. The results show that the mobile carrier D2EHPA is selective toward Palladium metal in simulated semiconductor waste. The optimum Palladium extraction was around 90% obtained by using 0.1M D2EHPA, 0.1M H₂SO₄ stripping agent, 5 minutes contact time, and 1: 3 treat ratio. However, the study on emulsion stability shows unstable results due to the leakage and swelling occurrence during the experiments. As a conclusion, the research shows high possibility of palladium extraction from simulated semiconductor waste using ELM process.
ABSTRAK

Sisa semikonduktor daripada industri penyaduran menjadi tarikan utama dalam masalah alam sekitar dan nilai kewangan kerana ketoksikan dan logam berharga yang hadir di dalam air sisa tersebut. Di dalam proses penyaduran, beberapa logam telah digunakan seperti penyadur perak, penyadur nikel, penyadur paladium dan penyadur tembaga. Logam penyadur yang disasarkan dalam kajian adalah paladium. Terdapat beberapa kaedah yang sesuai yang mempunyai kebolehan tinggi dalam mengekstrak paladium dari sisa air simulasi dan salah satu kaedah pengekstrakan adalah teknik membran cecair yang mana terdiri daripada tiga fasa cecair; fasa suapan (sisa air), fasa organic membran cecair dan fasa penerima. Sistem emulsi membran cecair sebagai kaedah alternatif dikaji untuk rawatan dan perolehan semula logam Paladium daripada sisa simulasi semikonduktor. Parameter penting dalam menentukan kemampuan pengekstrakan logam Paladium seperti kepekatan pembawa dan ejen pelucut, jenis ejen pelucut, nisbah rawatan bagi emulsi kepada fasa suapan dan masa pengekstrakan dikaji. Proses ini telah dijalankan dengan menggunakan sistem pengadun-pemisah berkelompok. Keputusan menunjukkan pembawa D2EHPA adalah tepilih terhadap logam paladium dalam sisa simulasi semikonduktor. Pengekstrakan optima logam Paladium adalah sekitar 90% yang diperolehi dengan menggunakan 0.1M D2EHPA, 0.1M H2SO4 agen pelucut, 5 minit masa pengekstrakan, dan 1:3 nisbah rawatan. Walau bagaimanapun, kajian terhadap kestabilan emulsi menunjukkan ketidakstabilan disebabkan kebocoran dan kebengkakan emulsi semasa eksperimen. Kesimpulannya, kajian ini menunjukkan proses ELM mempunyai potensi yang tinggi dalam pengekstrakan palladium dari sisa semikonduktor.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>CONTENT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
<td></td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>xiii</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xiv</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Research Background 1
1.2 Problem statement 2
1.3 Objective of the research 3
1.4 Scope of the research 4
1.5 Report outline 5
2 LITERATURE REVIEW

2.1 Industrial Semiconductor 6
2.2 Palladium Metal Properties 8
2.3 Metal recovery method 8
2.4 Liquid membrane technology 11
 2.4.1 Bulk Liquid Membrane 12
 2.4.2 Supported Liquid Membrane 13
 2.4.3 Emulsion Liquid Membrane 14
2.5 Preparation of Liquid Membrane process 15
2.6 Liquid Membrane Formulation 16
 2.6.1 Carrier 16
 2.6.2 Diluents 19
 2.6.3 Emulsifier 21
2.7 Membrane Transfer Mechanism of Liquid Membrane Process 23
 2.7.1 Simple permeation mechanism 23
 2.7.2 Facilitated transport mechanism 24
2.8 Emulsion liquid membrane 27
 2.8.1 ELM formulation 28
 2.8.2 Types of emulsion 31
 2.8.3 Emulsification 33
 2.8.4 Demulsification 34
2.9 Factors controlling metal extraction 36
 2.9.1 Membrane stability 36
 2.9.2 membrane thickness 38
 2.9.3 speed of the agitator 38
 2.9.4 feed phase solute concentration 39
 2.9.5 extractant concentration 40
 2.9.6 feed phase pH 40
 2.9.7 treat ratio 41
 2.9.8 stripping agent concentration and volume 41
fraction of internal phase

2.9.9 Effect of Diluents 41
2.9.10 Effect of volume ratio of organic phase to aqueous internal phase 42

2.10 Application of ELM technology 42

3 METHODOLOGY

3.1 Introduction 44
3.2 Screening process 44
3.3 Membrane process 46
3.4 Experimental procedures 47
3.5 Metal content analysis 50

4 RESULTS AND DISCUSSIONS

4.1 Introduction 51
4.2 Carrier screening 52
4.3 Effect of carrier concentration 54
4.4 Effect of stripping agent 55
4.5 Effect of concentration stripping agents 57
4.6 Effect of contact time 58
4.7 Effect of treat ratio 60

5 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion 63
5.2 Recommendation 65

REFERENCES 66

APPENDICES 73
REFERENCES

