REMOVAL OF HEAVY METAL USING 2-ACETYL-1-PYRROLINE DERIVED FROM PANDANUS AMIRYLLIFOLIUS

SIET CHEE MYAN

A proposal submitted in the fulfilment of the requirement for the award of degree of Bachelor of Engineering (Chemical)

Faculty of Chemical Engineering
Universiti Teknologi Malaysia

16th JANUARY 2013
Discharge of heavy metals from metal processing industries is known to have adverse effects on the environment. Conventional treatment technologies for removal of heavy metals from aqueous solution are not economical and generate huge quantity of toxic chemical sludge. Biosorption of heavy metals by metabolically inactive non-living biomass of microbial or plant origin is an innovative and alternative technology for removal of these pollutants from aqueous solution. The purpose of this study is to remove copper from waste water by using 2-acetyl-1-pyrroline (2AP) extracted from Pandanus leaves. The effect of dosage of biosorbent, pH aqueous solution, and the biosorption contact time were studied. The concentration of heavy metal ions was analyzed by using atomic adsorption spectroscopy (AAS). The maximum biosorption of copper ions is obtained up to 69.86% for 5ppm of initial copper ions loading by 1 hour. The Langmuir isotherms and Freundlich Isotherms were applied to correlate the equilibrium data. It is seen that the adsorption equilibrium data conformed well to the Freundlich isotherm.
ABSTRAK

Industri semakin pesat dengan mengeluarkan sejumlah besar air sisa buangan yang mengandungi kandungan bahan yang tinggi yang menyebabkan masalah alam sekitar yang serius. Sehubungan dengan itu, kaedah tradisional untuk menyingkirkan ion logam berat tidak ekonomi dan meninggalkan bahan sisa buangan yang beracun. Bioserapan yang menggunakan bakteri dan tumbuhan adalah kaedah yang murah. Tujuan kajian ini dijalankan adalah untuk mengkaji penyerapan ion logam besi iaitu copper dalam larutan menggunakan 2-acetyl-1-pyrroline daripada Daun Pandan. Kesedaran persaingan ion logam berat, nilai pH larutan, dan masa penyerapan larutan telah dikajikan. Kepekatan ion logam dianalisis menggunakan alat spektroskopi penyerapan atom (AAS). Keputusan kajian menunjukkan bahawa penyerapan larutan tertinggi adalah 69.86% untuk kepekatan ion logam di 5ppm dalam satu jam. Isoterma penyerapan Freundlich dibuktikan adalah isoterma yang paling sesuai untuk kajian ini.
<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>SUBJECT</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Background of Study</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Problem Statement</td>
<td>3</td>
</tr>
<tr>
<td>1.3</td>
<td>Objective</td>
<td>3</td>
</tr>
<tr>
<td>1.4</td>
<td>Scope of Study</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>LITERATURE REVIEW</td>
<td>4</td>
</tr>
</tbody>
</table>
2.1 Introduction to Pandanus

2.1.1 Volatile compounds in Pandanus amarylifolius Roxb.

2.2 Pre-treatment for Pandanus Leaves Extracts

2.2.1 Effect of Moisture Content of Pandanus Leaves

2.2.2 Effect of Particle Size

2.2.3 Effect of Time

2.3 Extraction Method for Pandanus Leaves

2.3.1 Water Distillation

2.3.2 Supercritical Fluid Extraction

2.3.3 Solvent Extraction

2.3.4 Pressurised Liquid Extraction

2.4 Background of Heavy Metal

2.4.1 Copper

2.5 Treatment for Heavy Metal

2.5.1 Precipitation

2.5.2 Ion Exchange

2.5.3 Reverse osmosis

2.5.4 Electro-winning

2.5.5 Cementation

2.6 Introduction to Biosorption

2.6.1 Biomass Type

2.6.2 Process Design for Biosorption

2.6.3 Biosorptive Capacity

2.7 Biosorption Mechanism

2.7.1 Precipitation
2.7.2 Physical Absorption 23
2.7.3 Ion Exchange 23
2.7.4 Complexion 24
2.7.5 Electro-coagulation 24
2.8 Factors affecting Biosorption 25
 2.8.1 Solution pH 26
 2.8.2 Temperature 26
 2.8.3 Ionic Strength 27
 2.8.4 Dosage of Biosorbent 27
 2.8.5 Size of Biosorbent 28
 2.8.6 Initial Solute Concentration 28
 2.8.7 Rate of Agitation 29
2.9 Biosorption Equilibrium 29
 2.9.1 Langmuir Isotherms 30
 2.9.2 Freundlich Isotherms 31
 2.9.3 Removal Efficiency 32

3 METHODOLOGY 33
3.1 Material 33
3.2 Apparatus 33
3.3 Procedure for Extraction 34
 3.3.1 Sample Preparation and Pre-treatment 34
 3.3.2 Solvent Extraction 34
3.4 Procedure for Heavy Metal Treatment 34
 3.4.1 Preparation for Copper Ion Solution 34
 3.4.2 Treatment for Heavy Metal 35
4 RESULTS

4.1 Effect of Contact Time on Biosorption of Copper ions 37

4.2 Effect of Biosorbent Concentration on Biosorption of Copper Ions 38

4.3 Effect of pH on Biosorption of Copper Ions 39

4.4 Biosorption Isotherms 41

5 CONCLUSION AND RECOMMENDATION 44

5.1 Conclusion 44

5.2 Recommendation 44

REFERENCES 46

APPENDIX A 51
REFERENCES

Yahya, Lu, Santos, Fryer, and Bakalis (2010). Supercritical Carbon Dioxide and Solvent Extraction of 2-Acetyl-1-Pyrroline from Pandan Leaf: The Effect of Pretreatment. *J. of Supercritical Fluids*, 200-207.
