PRODUCTION OF GLUCOSE FROM OIL PALM FOLIAGES
BY USING AMMONIA PRETREATMENT

TAY QIAO ROU

This thesis is submitted as fulfilment of the requirements for the award of the degree
of Bachelor of Engineering (Chemical)

Faculty of Chemical Engineering
Universiti Teknologi Malaysia

JANUARY, 2013
ABSTRACT

The study explored glucose production from lignocellulosic materials (oil palm foliages). Throughout the experiment, oil palm foliages had gone through two major processes, ammonia pre-treatment and concentrated sulphuric acid hydrolysis. Ammonia pre-treatment was a preliminary treatment for removal of lignin (one of the three major chemical components comprised in plant fiber). Concentrated sulphuric acid hydrolysis is the chemical conversion of pretreated polysaccharide into monosaccharide (glucose). In this study, three different parameters in ammonia pretreatment were investigated; temperature, solid to liquid (S/L) ratio, and ammonia concentration. The final product had undergone DNS analysis to validate the presence of glucose. Glucose concentration was then verified and determined from standard glucose calibration graph. The optimum condition of ammonia pretreatment was identified by analyzing the amount of glucose production. The optimum condition with the highest glucose release, which was approximately 51 g/L, was observed with S/L ratio of 1:12, an ammonia concentration of 7%, and at temperature of 40°C.
ABSTRAK

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td>ii</td>
<td></td>
</tr>
<tr>
<td>DEDICATION</td>
<td>iii</td>
<td></td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iv</td>
<td></td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
<td></td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
<td></td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xi</td>
<td></td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xiii</td>
<td></td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xvi</td>
<td></td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1
1.1 Research Background 1
1.2 Problem Statement 3
1.3 Objective of Research 3
1.4 Scope of Research 4
1.5 Significance of Research 4

2 LITERATURE REVIEW 6
2.1 Introduction of Woody Biomass Feedstock Resources 6
2.2 Availability of Oil Palm Biomass in Malaysia 7
2.3 Economic and Environmental Issues 9
2.4 Properties of Lignocellulose as Feedstocks
 2.4.1 Cellulose
 2.4.2 Hemicellulose
 2.4.3 Lignin

2.5 Pretreatment
 2.5.1 Chemical Pre-treatments
 2.5.1.1 Alkaline Pretreatments
 2.5.2 Physico-Chemical Pretreatments
 2.5.2.1 Ammonia Steeping Process (SAA Pretreatments)

2.6 Hydrolysis Process (Treatment)
 2.6.1 Chemical Hydrolysis (Acid Hydrolysis)

2.7 Glucose Production

2.8 Bioethanol Fermentation Process

2.9 Biomass Ethanol Production

2.10 Advantages of Bio-ethanol

2.11 Analytical Method
 2.11.1 Estimation of Lignin Removal
 2.11.2 Dinitrosalicylic Acid Method

3 METHODOLOGY

3.1 Apparatus
3.2 Material
 3.2.1 Oil Palm Foliages

3.3 Soaking in Aqueous Ammonia Pretreatment
 3.3.1 The Effect of Parameters
 3.3.1.1 The Effect of Pretreatment Temperature and Solid-to-Liquid Ratio
 3.3.1.2 The Effect of Ammonia Concentration
 3.3.2 Estimation of Lignin Removal
 3.3.2.1 Preparation of Standard
Calibration Curve for Lignin

3.4 Concentrated Sulphuric Acid Hydrolysis 33
 3.4.1 Fixed Parameters 33
 3.4.1.1 Hydrolysis temperature, Solid-to-Liquid Ratio and Concentrated Sulphuric Acid Concentration 34
 3.4.2 Dinitrosalisylic Acid (DNS) Method 34
 3.4.2.1 Preparation of Standard 35
 Calibration Curve for Glucose

4 RESULT AND DISCUSSION 36
 4.1 Ammonia Pretreatment 36
 4.1.1 Effect of Solid-to-Liquid Ratio 36
 4.1.2 Effect of Temperature 39
 4.1.3 Effect of Ammonia Concentration 41

5 CONCLUSIONS AND RECOMMENDATIONS 43
 5.1 Conclusion 43
 5.2 Recommendation 44

REFERENCES 46
APPENDICES A-C 52
REFERENCE

