ADSORPTION OF METHYLENE BLUE BY ACTIVATED CARBON
PREPARED FROM WASTE TIRE POWDER

TING CHIEW NGIIK

A thesis submitted in partial fulfillment of the
requirements for the award of the degree of
Bachelor of Engineering (Chemical)

Faculty of Chemical Engineering
Universiti Teknologi Malaysia

JANUARY 2013
Nowadays, waste tires disposal had become a great issue in the world. There are also many problems arise from the disposal of waste tires. However, from the environmental and economical points of view, a better solution is to convert such waste into valuable products which are pyrolysis oil and activated carbon. Likewise, the activated carbon can also be used in air pollution control and wastewater treatment. Therefore this study was carried out to identify a suitable activation method for preparing a better quality activated carbon. There were two methods had been chosen in this study which are microwave steam activation and zinc chloride activation. The adsorption of methylene blue onto the activated carbons was characterized and investigated. The BET surface area for Z-AC was the highest (288 m²/g) compared to the other two samples, as well as the percentage of yield (91.2%), due to the presence of ZnCl₂ in activation. The equilibrium adsorption capacity for Z-AC was 154 mg/g while that of MW-AC and recycled Z-AC were 82mg/g and 60 mg/g respectively. On the other hand, the adsorption of methylene blue was influenced by the initial concentrations. As the initial concentrations increased, the rates of the adsorption were decreased. Besides, Langmuir isotherm was well-fitted with the adsorption of methylene blue compared to Freundlich isotherm. The adsorption of methylene blue was also fitted with pseudo-second order compared to pseudo-first order model.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATION</td>
<td></td>
<td>xiii</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Background of Research 1
1.2 Problem Statement 3
1.3 Objectives and Scope 3
1.4 Significance of Research 4

2 LITERATURE REVIEW

2.1 Dyes 6
 2.1.1 Environmental Effects of Dye 10
2.2 Method of Dye Removal 13
 2.2.1 Biological Treatment 13
 2.2.2 Chemical Treatment 14
2.2.3 Physical Treatment 15

2.3 Activated Carbon 15
 2.3.1 Characteristics of Activated Carbon 18
 2.3.1.1 BET Surface Area 18
 2.3.1.2 Surface Functional Groups 21
 2.3.1.3 Ash Content 25
 2.3.2 Types of Activation 26
 2.3.2.1 Physical Activation 27
 2.3.2.2 Chemical Activation 27
 2.3.2.3 Microwave Activation 28

2.4 Adsorption 29
 2.4.1 Types of Adsorption 30
 2.4.1.1 Physical Adsorption 31
 2.4.1.2 Chemical Adsorption 32
 2.4.2 Adsorption Kinetics 33
 2.4.2.1 Pseudo First Order Model 33
 2.4.2.2 Pseudo Second Order Model 34
 2.4.3 Adsorption Equilibrium 35
 2.4.3.1 Langmuir Isotherm 35
 2.4.3.2 Freundlich Isotherm 37
 2.4.4 Factors Affecting Adsorption Rate 38
 2.4.4.1 Temperature 38
 2.4.4.2 Surface Area of the Adsorbent 39
 2.4.4.3 Effect of pH 40
 2.4.4.4 Effect of Contact Time 41
 2.4.5 Mechanism of Adsorption 41

3 RESEARCH METHODOLOGY 43

3.1 Experimental Procedures 43
 3.1.1 Preparation of Dye Solution 43
 3.1.2 Heat Treatment of Raw Material 44
 3.1.3 Preparation of Zinc Chloride Activated Carbon 45
 3.1.4 Preparation of Steam Activated Carbons 45

3.2 Characterization of Activated Carbon 45
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.1 BET Surface Area</td>
<td>45</td>
</tr>
<tr>
<td>3.2.2 Fourier Transform Infrared Spectroscopy (FTIR) Analysis</td>
<td>46</td>
</tr>
<tr>
<td>3.2.3 Scanning Electron Microscopy (SEM)</td>
<td>46</td>
</tr>
<tr>
<td>3.3 Adsorption of Methylene Blue</td>
<td>47</td>
</tr>
<tr>
<td>3.3.1 Effect of Initial Concentration (Equilibrium Isotherm)</td>
<td>47</td>
</tr>
<tr>
<td>3.3.2 Effect of Contact Time</td>
<td>49</td>
</tr>
<tr>
<td>4 RESULTS AND DISCUSSION</td>
<td>51</td>
</tr>
<tr>
<td>4.1 Characterization of Activated Carbons</td>
<td>51</td>
</tr>
<tr>
<td>4.1.1 Effect of Activation on Yield</td>
<td>51</td>
</tr>
<tr>
<td>4.1.2 BET surface area analysis</td>
<td>52</td>
</tr>
<tr>
<td>4.1.3 Scanning Electron Microscopy (SEM) Analysis</td>
<td>53</td>
</tr>
<tr>
<td>4.1.4 Fourier Transform Infrared Spectroscopy (FTIR) Analysis</td>
<td>55</td>
</tr>
<tr>
<td>4.2 Adsorption of Methylene Blue</td>
<td>56</td>
</tr>
<tr>
<td>4.2.1 Adsorption Isotherm</td>
<td>56</td>
</tr>
<tr>
<td>4.2.2 Isotherm Analysis</td>
<td>58</td>
</tr>
<tr>
<td>4.2.2 Effect of Contact Time</td>
<td>61</td>
</tr>
<tr>
<td>4.3 Kinetics Analysis</td>
<td>63</td>
</tr>
<tr>
<td>5 CONCLUSIONS AND RECOMMENDATIONS</td>
<td>68</td>
</tr>
<tr>
<td>5.1 Conclusions</td>
<td>68</td>
</tr>
<tr>
<td>5.2 Recommendations</td>
<td>69</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>71</td>
</tr>
<tr>
<td>APPENDIX</td>
<td>79-80</td>
</tr>
</tbody>
</table>
REFERENCES

Neha Gupta, Atul Kumar Kushwaha, M.C. Chattopadhyaya (2012). Adsorption studies of cationic dyes onto Ashoka leaf powder. J. of the Taiwan Institute of Chemical Engineers

