OMEGA-3 EMULSION FROM RUBBER (*HEVEA BRASILIENSIS*) SEEDS

WAN NURAISHA BINTI WAN KAMARUDIN

A report submitted as partial fulfillment of the requirements for the award of the degree of Bachelor in Engineering (Chemical)

Faculty of Chemical Engineering
Universiti Teknologi Malaysia

JANUARY 2013
ABSTRACT

The formulation of omega-3 emulsion from rubber (*Hevea Brasiliensis*) seed oil must be based on the best performance of the emulsion formation in varying the type and composition of emulsifier used. By choosing rubber seed that has been a beneficial waste as the main resource in producing emulsion for food purpose, people can get one of the important sources of omega-3 that normally is supplied by the fish oil. The difference of them are the absentees of ecosapetanoic acids (EPA) and docosahaxaneoic acids (DHA) in the rubber seed oil, but still it has a significant value of linolenic acids (LNA) about 19.22%. Type of the emulsion is determined according to the HLB value of emulsifier. Emulsifier with a low HLB value lead to the formation water-in-oil (W/O) emulsion and the oil-in-water (O/W) is in another way around. The dilution method with water and oil is used for confirmation. Preparation of rubber seed oil (RSO) involved knocking the kernel, peeling, cutting, drying the rubber seed and extraction of oil by soxhlet extraction. Then, RSO is being mixed with distilled water and emulsifier including agents by homogenizer. Non-ionic emulsifier such as lecithin and span 80 will be chosen to use in the formulation. The best ratio of emulsifier and type of emulsion are investigated to produce a stable emulsion based on small droplet size, colour of the emulsion, low moisture content, moderate viscosity and slightly acidic pH value. From the analysis conducted, the best formulation selected is E2 with 50% distilled water, 6% lecithin of the total oil and 47% rubber seed oil (RSO).
ABSTRAK

Formulasi emulsi omega-3 daripada minyak biji getah (Hevea Brasiliensis) adalah berdasarkan pembentukan emulsi yang stabil di mana beberapa jenis pengemulsi dan komposisi emulsi yang berbeza telah digunakan. Biji-biji getah daripada pokok getah yang terbuang boleh memberi manfaat kepada manusia kerana ia mengandungi omega-3 yang kebiasaannya boleh didapati daripada minyak ikan yang merupakan makanan tambahan untuk kepentingan tubuh badan. Namun begitu, biji getah tidak mengandungi ecosapentanoic (EPA) dan asid docosahaxaneoic (DHA) tetapi masih mempunyai nilai asid linolenik (LNA) yang tinggi sebanyak 19.22%. Jenis emulsi yang akan terhasil ditentukan oleh nilai HLB pada pengemulsi. Nilai rendah membawa kepada pembentukan air dalam minyak (W/O) dan sebaliknya untuk pembentukan minyak dalam air (O/W). Namun begitu, ia perlu dipastikan dengan menggunakan metod pencairan dengan air dan minyak. Penyediaan minyak buah getah (RSO) merangkumi pemecahan kulit biji getah, pengupasan, pemotongan, pengeringan biji getah, pengekstrakan minyak dengan menggunakan soxhlet dan yang terakhir transesterifikasi. Selepas itu, RSO dicampur bersama air suling dan pengemulsi. Pengemulsi bukan ionik seperti lesitin dan span 80 digunakan dalam penggubalan emulsi. Nisbah kepekatan bahan dan jenis pengemulsi terbaik dikaji untuk menghasilkan emulsi yang stabil yang mempunyai karakteristik seperti saiz titisan yang kecil, warna emulsi yang tertentu, kandungan lembapan yang rendah, kelikatan yang sederhana dan nilai pH yang sederhana rendah. Daripada analisis yang dijalankan, formulasi yang terbaik adalah formulasi E2 yang mengandungi 50% air suling, 6% lesitin daripada berat minyak dan 47% minyak buah getah (RSO).
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE PAGE</td>
<td></td>
<td>i</td>
</tr>
<tr>
<td>DECLARATION</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>DEDICATION</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td></td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF SYMBOLS AND ABBREVIATIONS</td>
<td></td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td></td>
<td>xvi</td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1

1.1 Background of Study 1
1.2 Problem Statements 3
1.3 Objectives 3
1.4 Hypothesis 4
1.5 Scope 4

2 LITERATURE REVIEW 5

2.1 Hevea Brasiliensis 5

2.1.1 The Properties of Rubber Seed oil 7

2.2 Important of Omega-3 Polyunsaturated fatty acids 7
2.3 Emulsion
 2.3.1 Microemulsion
 2.3.2 Multiple Emulsion
2.4 Differences between Types of Emulsion
2.5 Purpose of Emulsion
2.6 Food emulsion
2.7 Food Additive
 2.7.1 Preservative Omega-3
 2.7.2 Antioxidants
 2.7.3 Colouring Agent
 2.7.4 Flavouring
 2.7.5 Emulsifiers
 2.7.5.1 Non-ionic Emulsifier
2.8 Major Factors Influencing the Formation and Stability of Beverage Emulsion
2.9 Unstable Emulsion Mechanism
2.10 Conventional Methods in Preparing Emulsion
 2.10.1 Homogenizer
 2.10.2 Comparison between Available Methods for Emulsion
2.11 Beaker Method in Making Emulsion
2.12 Hydrophilic- Lipophilic Balance (HLB)
2.13 Bancroft’s Rule
2.14 Phase Inversion
2.15 The Physical Properties of Emulsion
 2.15.1 Type of Emulsion
 2.15.2 Particle Size
2.16 Viscosity Properties
2.17 Moisture content
2.18 pH Measurement
2.19 Formulation from the Previous Study

3 METHODOLOGY
3.1 Introduction
3.2 Materials 33
3.3 Apparatus 34
3.4 Sampling 35
 3.4.1 Preparation of Rubber Seed from Kernel 35
 3.4.2 Extraction of Rubber Seed Oil 35
3.5 Producing Rubber Seed Oil Emulsion 36
 3.5.1 Preparation of Ingredients 37
 3.5.2 Mixing of Ingredients 37
 3.5.2.1 Homogenizer 39
3.6 Determination Type of Emulsion 39
3.7 Measurement Stability of Emulsion 39
3.8 Determination of Physical Characteristic 40
 3.8.1 pH Measurement 40
 3.8.2 Droplet Size Measurement 40
 3.8.3 Measurement of Viscosity 41
 3.8.4 Determination of Moisture Content 43
 3.8.5 Observation Colour of Emulsion 43
3.9 Statistical Analysis 43

4 RESULTS AND DISCUSSION 45
4.1 Preliminary Study 45
 4.1.1 Span 80 45
 4.1.2 Lecithin 49
4.2 Determination Type of Emulsion 51
4.3 Stability of Emulsion 52
4.4 Physical Characteristics of the Emulsion 53
 4.4.1 Effect Concentration of Span 80 on Viscosity 54
 4.4.2 Effect Concentration of Span 80 on pH 55
 4.4.3 Effect Concentration of Span 80 on Moisture Content 56
 4.4.4 Effect Concentration of Span 80 on Droplet Size 57
 4.4.5 Effect Concentration of Span 80 on Moisture Content 61
5 CONCLUSIONS AND RECOMMENDATIONS
5.1 Conclusions
5.2 Recommendations
REFERENCES
Appendices A-D
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Result of analysis for RSO</td>
<td>7</td>
</tr>
<tr>
<td>2.2</td>
<td>Comparison of emulsion and microemulsion.</td>
<td>10</td>
</tr>
<tr>
<td>2.3</td>
<td>Types of emulsions</td>
<td>11</td>
</tr>
<tr>
<td>2.4</td>
<td>Emulsifier and their regulatory status in US and Europe</td>
<td>16</td>
</tr>
<tr>
<td>2.5</td>
<td>Comparison between homogenizer and mechanical stirrer methods</td>
<td>23</td>
</tr>
<tr>
<td>2.6</td>
<td>HLB number ranges and their application</td>
<td>25</td>
</tr>
<tr>
<td>2.7</td>
<td>Emulsion effect on the HLB value and phase ratio</td>
<td>27</td>
</tr>
<tr>
<td>2.8</td>
<td>Emulsion Preparation in selected previous research for model emulsion</td>
<td>31</td>
</tr>
<tr>
<td>3.1</td>
<td>Material and its function</td>
<td>34</td>
</tr>
<tr>
<td>3.2</td>
<td>The apparatus and equipment with its function</td>
<td>34</td>
</tr>
<tr>
<td>3.3</td>
<td>How emulsifier, oil base and water base are mixed</td>
<td>37</td>
</tr>
<tr>
<td>3.4</td>
<td>Emulsion composition and its code</td>
<td>38</td>
</tr>
<tr>
<td>4.1</td>
<td>Preliminary study on ratio of oil to water for span 80</td>
<td>46</td>
</tr>
<tr>
<td>4.2</td>
<td>Preliminary study on percentage of span 80</td>
<td>46</td>
</tr>
<tr>
<td>4.3</td>
<td>Preliminary study on ratio of oil to water for lecithin</td>
<td>49</td>
</tr>
<tr>
<td>4.4</td>
<td>Preliminary study on percentage of lecithin</td>
<td>49</td>
</tr>
<tr>
<td>4.5</td>
<td>Effect Percentage of span 80 on degree of creaming</td>
<td>52</td>
</tr>
<tr>
<td>4.6</td>
<td>Effect Percentage of lecithin on degree of creaming</td>
<td>52</td>
</tr>
<tr>
<td>4.7</td>
<td>Result for colour observation</td>
<td>61</td>
</tr>
<tr>
<td>4.8</td>
<td>Analysis of omega-3 emulsion samples for various formulation</td>
<td>62</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>2.1</td>
<td>Rubber seed</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>Fatty acid composition in MRSO.</td>
<td>6</td>
</tr>
<tr>
<td>2.3</td>
<td>Chemical structure of omega-3 and omega-6</td>
<td>6</td>
</tr>
<tr>
<td>2.4</td>
<td>Parameters that influence the formation and stability of beverage emulsion.</td>
<td>20</td>
</tr>
<tr>
<td>2.5</td>
<td>The schematic of emulsion destabilization mechanisms</td>
<td>21</td>
</tr>
<tr>
<td>2.6</td>
<td>How the homogenizing valve work</td>
<td>22</td>
</tr>
<tr>
<td>3.1</td>
<td>Rubber seed before peeled</td>
<td>35</td>
</tr>
<tr>
<td>3.2</td>
<td>The arrangement of soxhlet extractor.</td>
<td>36</td>
</tr>
<tr>
<td>3.3</td>
<td>Homogenizing step with homogenizer</td>
<td>38</td>
</tr>
<tr>
<td>3.4</td>
<td>Microscope used in analyzed droplet size of emulsion</td>
<td>41</td>
</tr>
<tr>
<td>3.5</td>
<td>Viscometer for viscosity analysis</td>
<td>42</td>
</tr>
<tr>
<td>3.6</td>
<td>The general flow chart of the overall experiment</td>
<td>44</td>
</tr>
<tr>
<td>4.1</td>
<td>Emulsion for ratio oil to water for (a) 25: 75 (b) 60:40</td>
<td>47</td>
</tr>
<tr>
<td>4.2</td>
<td>Emulsion for ratio oil to water for 50:50 but with the concentration of emulsifier (a) E17-6% (b) E16-7%</td>
<td>48</td>
</tr>
<tr>
<td>4.3</td>
<td>Emulsion for ratio oil to water for 50:50 but with the concentration of emulsifier (a) E15-8.5% (b) E14-10%</td>
<td>48</td>
</tr>
<tr>
<td>4.4</td>
<td>Emulsion with ratio oil to water for (a) 60:40 (b) 25: 75</td>
<td>50</td>
</tr>
<tr>
<td>4.5</td>
<td>Emulsion for ratio oil to water for 50:50 with the concentration of emulsifier (a) E1-3% (b) E2-6% and (c) E3-9%</td>
<td>51</td>
</tr>
<tr>
<td>4.6</td>
<td>Observation during determination type of emulsion.</td>
<td>51</td>
</tr>
</tbody>
</table>
4.7 The graph of viscosity against the formulation with the increasing percentage of emulsifier.

4.8 The effect on pH due to the increasing percentage and type of emulsifier.

4.9 The effect of percentage and type of emulsifier on moisture content.

4.10 The microstructure of emulsion with different concentration of span 80 (a) 6%-E7 (b) 7%-E6(c) 8.5 %-E5 (d) 10%-E4.

4.11 The microstructure of emulsion with different concentration of lecithin (a) 3%-E1 (b) 6%-E2(c) 9 %-E3.

4.12 Frequency of distribution of long term stable emulsion graph with 4 different formulations.

4.13 Frequency of distribution of short term stable emulsion graph with 4 different formulations.

4.14 Graph for maximum droplet size based on the concentration of emulsifier.
LIST OF SYMBOLS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Arachidonic acid</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>C</td>
<td>Carbon</td>
</tr>
<tr>
<td>CHD</td>
<td>Coronary heart disease</td>
</tr>
<tr>
<td>cP</td>
<td>Centipoise</td>
</tr>
<tr>
<td>d</td>
<td>Diameter</td>
</tr>
<tr>
<td>DHA</td>
<td>Docosahexanoic acid</td>
</tr>
<tr>
<td>E1-E17</td>
<td>Emulsion formulation</td>
</tr>
<tr>
<td>EPA</td>
<td>Ecasapetanoic acid</td>
</tr>
<tr>
<td>f_w</td>
<td>fraction of the dispersed phase</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>GLC</td>
<td>Gas Liquid Chromatography</td>
</tr>
<tr>
<td>GMS</td>
<td>Glycerol monostearate</td>
</tr>
<tr>
<td>HLB</td>
<td>Hydrophilic-Lipophilic Balance</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>k_w</td>
<td>Conductivity of continuous phase</td>
</tr>
<tr>
<td>LA</td>
<td>Linoleic acid</td>
</tr>
<tr>
<td>LNA</td>
<td>Linolenic acid</td>
</tr>
<tr>
<td>L_α</td>
<td>Lamellar phase</td>
</tr>
<tr>
<td>MG</td>
<td>Monodiglyceride</td>
</tr>
<tr>
<td>ml</td>
<td>Millilitres</td>
</tr>
<tr>
<td>MRSO</td>
<td>Malaysian rubber seed oil</td>
</tr>
<tr>
<td>n</td>
<td>Number of droplet</td>
</tr>
<tr>
<td>$n-3$</td>
<td>Omega-3</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Meaning</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>n-6</td>
<td>Omega-6</td>
</tr>
<tr>
<td>NaOH</td>
<td>Sodium Hydroxide</td>
</tr>
<tr>
<td>O</td>
<td>Oxygen</td>
</tr>
<tr>
<td>O/W</td>
<td>Oil in water emulsion</td>
</tr>
<tr>
<td>O/W/O</td>
<td>Oil-in-water-in-oil emulsion</td>
</tr>
<tr>
<td>°C</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>PIT</td>
<td>Phase inversion Temperature</td>
</tr>
<tr>
<td>PUFA</td>
<td>Polyunsaturated Fatty Acid</td>
</tr>
<tr>
<td>R</td>
<td>Alkane chain</td>
</tr>
<tr>
<td>RPM</td>
<td>Rotation per minute</td>
</tr>
<tr>
<td>RSO</td>
<td>Rubber seed oil</td>
</tr>
<tr>
<td>S.D</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>TAG</td>
<td>Triacylglycerol</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>US</td>
<td>United State</td>
</tr>
<tr>
<td>V</td>
<td>Volume</td>
</tr>
<tr>
<td>W/O</td>
<td>Water in oil emulsion</td>
</tr>
<tr>
<td>W/O/W</td>
<td>Water-in-oil-in-water emulsion</td>
</tr>
<tr>
<td>μ</td>
<td>Micro (10^-6)</td>
</tr>
<tr>
<td>%</td>
<td>Percentage</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>APPENDIX</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>One-way ANOVA analysis for Moisture Content</td>
<td>76</td>
</tr>
<tr>
<td>B</td>
<td>One-way ANOVA analysis for pH value</td>
<td>76</td>
</tr>
<tr>
<td>C</td>
<td>One-way ANOVA analysis for Viscosity</td>
<td>77</td>
</tr>
<tr>
<td>D</td>
<td>One-way ANOVA analysis for Droplet Size</td>
<td>77</td>
</tr>
</tbody>
</table>
REFERENCES

Chin, H.F., Enoch, I.C., and Rajaharun, R.M. *Seed technology in the tropics*. Faculty of Agriculture, Universiti Putra Malaysia ;1977.

ISSN 0001-8686

Scott, W.J. (1957). Water Relations of Food Spoilage Microorganisms Advances in Food Research. 1, 83-127.

