EFFECT OF STORAGE CONDITIONS ON THE FLOWABILITY OF
DIFFERENT MILK POWDERS FOR HOPPER DESIGN

NUR AJEERA BINTI ISA

A report submitted in partial fulfilment of the
requirements for the award of the degree of
Bachelor of Engineering (Chemical-Bioprocess)

Faculty of Chemical Engineering
Universiti Teknologi Malaysia

JUNE 2013
Makanan dihasilkan dalam bentuk serbuk untuk memanjangkan jangka hayat dengan mengurangkan kandungan air. Serbuk kelihatan mudah untuk dikendalikan, bagaimanapun, terdapat banyak isu-isu penting dalam menyampaikan serbuk yang terdiri daripada pelbagai operasi seperti semasa penyimpanan, pengendalian, pengangkutan dan pembungkusan. Keupayaan mengalir serbuk makanan merupakan satu isu penting dalam mengendalikan serbuk dalam operasi-operasi terutamanya semasa penyimpanan di mana serbuk disimpan di dalam silo atau corong. Dengan menggunakan kaedah reka bentuk corong Jenike, bersama-sama dengan sifat-sifat fizik yang diukur seperti kepadatan pukal dan sifat aliran serbuk, nilai α dan D corong dikira. Jenis serbuk mempunyai pelbagai jenis ciri-ciri fizikal dan aliran. Dalam kajian ini, tiga jenis susu tepung, Tepung Susu (SMP), Susu Tepung Seluruh (WMP) dan 65% Tepung Penuh Lemak (FFP) dengan kandungan lemak yang berbeza dikira nilai α dan D dalam keadaan penyimpanan yang berbeza. Kesaran daripada keadaan penyimpanan pada keupayaan mengalir serbuk adalah disiasat melalui reka bentuk corong.
Food is produced in powdered form to prolong its shelf life by reducing the water content. Powder looks easily to handle, however, there are many important issues in delivering powder which consist of a variety of operations such as during storage, handling, transportation and packaging. Flowability of food powder is an important issue in handling powders to the operations especially during storage where the powder is stored in the silo or hopper. By using Jenike’s hopper design methodology, along with the physical properties measured such as bulk density and flow properties of the powder, the α and D values of a hopper are calculated. Different types of powder have different types of physical and flow properties. In this study, three different types of milk powder; Skim Milk Powder (SMP), Whole Milk Powder (WMP) and 65% Fat Filled Powder (FFP) with different fat contents had α and D values calculated in different storage conditions. The effect of storage conditions on the flowability of the powder are investigate through the hopper design.
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DECLARATION</td>
<td>ii</td>
</tr>
<tr>
<td></td>
<td>DEDICATION</td>
<td>iv</td>
</tr>
<tr>
<td></td>
<td>ACKNOWLEDGMENT</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>vii</td>
</tr>
<tr>
<td></td>
<td>TABLE OF CONTENT</td>
<td>viii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xiii</td>
</tr>
</tbody>
</table>

1 INTRODUCTION

1.1 Background of Study 1
1.2 Problem of Statement 3
1.3 Objective 4
1.4 Scopes of Study 5
LITERATURE REVIEW

2.1 Overview of Powder Properties
 2.1.1 Importance of Powder Properties
 2.1.2 Some of Powder Properties
 2.1.2.1 Particle Size Distribution
 2.1.2.2 Particle Density
 2.1.2.3 Bulk Density and Compressibility
 2.1.2.4 Moisture Content

2.2 Food Powder Industry

2.3 Powder Storage
 2.3.1 Silo or Hopper
 2.3.1.1 Mass Flow
 2.3.1.2 Funnel Flow
 2.3.1.3 No Flow
 2.3.1.4 Problems in Silo

2.4 Flowability of Powder

2.5 Jenike’s Hopper Design Methodology
 2.5.1 Jenike’s Shear Cell Test
 2.5.2 Annular Shear Cell Test

2.6 Flow factor and Angle of Hopper

METHODOLOGY

3.1 Introduction

3.2 Physical Properties of Milk Powder

3.3 Flow Properties of Milk Powder
 3.3.1 Flow Properties of Milk Powder at Ambient Condition
 3.3.2 Flow Properties of Milk Powder at Different Temperatures
 3.3.3 Flow Properties of Milk Powder at Relative Humidity of 46%

3.4 Calculation of Angle of Hopper and Flow factor
4 RESULTS AND DISCUSSION

4.1 Introduction 25

4.2 Flow Properties and Hopper Designs of Milk Powders at Ambient Condition 26

4.3 Flow Properties and Hopper Designs of Milk Powder at Different Temperatures 27
 4.3.1 Skim Milk Powder (SKM) 27
 4.3.2 Whole Milk Powder (WMP) 28
 4.3.3 65% Fat Filled Powder (FFP) 29
 4.3.4 Comparison of the Hopper Designs of the Milk Powders at Different Temperatures 30

4.4 Flow Properties and Hopper Designs of Milk Powder at Relative Humidity 31

5 CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion 32

5.2 Recommendations 34

References 35

Appendix 36
REFERENCES

